

Term. spé. maths

AP-03 – Corrigés

Corrigé AP03-01

a. f est dérivable sur $D = \mathbb{R}_*$ et pour tout réel x de D:

$$f'(x) = -\frac{2}{x^2} + 2x.$$

b. f est dérivable sur $D =]0; +\infty[$ et pour tout réel x de D:

$$f'(x) = 5x^4 - \frac{1}{x^2} - \frac{1}{2\sqrt{x}}.$$

c. f est dérivable sur $D = \mathbb{R}^*$. De plus, $f = -\frac{3}{2} \times \frac{1}{x}$. Donc pour tout réel x de D:

$$f'(x) = -\frac{3}{2} \times \left(-\frac{1}{x^2}\right) = \frac{3}{2x^2}.$$

d. f est dérivable sur $D = \mathbb{R}^*$ et pour tout réel $x \in D$:

$$f(x) = \frac{2x^2 + 1}{x} = \frac{2x^2}{x} + \frac{1}{x} = 2x + \frac{1}{x}.$$

Donc

$$f'(x) = 2 - \frac{1}{x^2}$$
.

e. f est dérivable sur $D =]0; +\infty[$ et pour tout $x \in D$:

$$f'(x) = 1 \cdot \sqrt{x} + x \cdot \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{x}{2\sqrt{x}} = \frac{\sqrt{x} \cdot 2\sqrt{x}}{2\sqrt{x}} + \frac{x}{2\sqrt{x}} = \frac{2x + x}{2\sqrt{x}} = \frac{3x}{2\sqrt{x}}.$$

f. f est dérivable sur $D = \mathbb{R}^*$ et pour tout $x \in D$:

$$f'(x) = \frac{-4x^{-5}}{8} = -\frac{x^{-5}}{2}$$
.

g. f est dérivable sur $D = \mathbb{R}$ et pour tout $x \in D$:

$$f'(x) = -1$$
.

h. Le quotient $x^2 + 2$ n'est jamais nul, donc f est dérivable sur $D = \mathbb{R}$. Pour tout $x \in D$:

$$f'(x) = \frac{2x(x^2+2) - (x^2-1)(2x)}{(x^2+2)^2} = \frac{2x^3 + 4x - 2x^3 + 2x}{(x^2+2)^2} = \frac{6x}{(x^2+2)^2}.$$

i. Le dénominateur $2x^2 - x - 1$ admet pour racine évidente $x_1 = 1$. Son autre racine x_2 vérifie donc

$$x_1 x_2 = \frac{c}{a} \Longrightarrow x_2 = -\frac{1}{2}.$$

La fonction f est donc dérivable sur

$$D = \mathbb{R} \setminus \left\{ -\frac{1}{2}; 1 \right\} = \left[-\infty; -\frac{1}{2} \right] \cup \left[-\frac{1}{2}; 1 \right] \cup \left[1; +\infty \right[.$$

Pour tout $x \in D$:

$$f'(x) = \frac{(10x-3)(2x^2-x-1)-(5x^2-3x+2)(4x-1)}{(2x^2-x-1)^2}$$

$$= \frac{(20x^3-6x^2-10x^2+3x-10x+3)-(20x^3-5x^2-12x^2+3x+8x-2)}{(2x^2-x-1)^2}$$

$$= \frac{20x^3-16x^2-7x+3-20x^3+17x^2-11x+2}{(2x^2-x-1)^2}$$

$$= \frac{x^2-18x+5}{(2x^2-x-1)^2}.$$

Corrigé AP03-02

a.
$$f'(x) = 2x - \frac{1}{2\sqrt{x}}$$
;

b.
$$f'(x) = \frac{3(2x+3)-2(3x-1)}{(2x+3)^2} = \frac{11}{(2x+3)^2}$$

$$\mathbf{c.} \ f'(x) = \frac{3x^2(1+x) - (1+x^3) \times 1}{(1+x)^2} = \frac{3x^2 + 3x^3 - 1 - x^3}{(1+x)^2} = \frac{2x^3 + 3x^2 - 1}{(1+x)^2};$$

d.
$$f'(x) = \frac{-2x}{2\sqrt{1-x^2}} = -\frac{x}{\sqrt{1-x^2}};$$

e.
$$f'(x) = \sqrt{4-x} + x \times \frac{-1}{2\sqrt{4-x}} = \frac{8-2x-x}{2\sqrt{4-x}} = \frac{8-3x}{2\sqrt{4-x}}$$
;

f.
$$f'(x) = 4(2x-2)(x^2-2x)^3 = 8x^3(x-1)(x-2)^3$$
;

g. On peut écrire que $f(x) = (1 - 2x)^{-3}$, donc :

$$f'(x) = -3(-2)(1-2x)^{-4} = \frac{6}{(1-2x)^4};$$

h. $f'(x) = -4\sin(4x - 1)$.

Corrigé AP03-03

- $f_1'(x) = 1 \times e^x + x \times e^x = e^x + xe^x$.
- $f_2'(x) = \frac{3(x^2+1) (3x+5) \times (2x)}{(x^2+1)^2} = \frac{3x^2 + 3 6x^2 10x}{(x^2+1)^2} = \frac{-3x^2 10x + 3}{(x^2+1)^2}.$
- $f_3'(x) = (2x+1)e^{x^2+x+1}$.
- $f_4'(x) = 5 \times 4 \times (4x 3)^4 = 20(4x 3)^4$.

Corrigé AP03-04

$$f_1'(x) = 2xe^x + x^2e^x = (2x + x^2)e^x;$$

$$f_2'(x) = \frac{1 \times (x^2 + 1) - (x - 3) \times (2x)}{(x^2 + 1)^2} = \frac{x^2 + 1 - 2x^2 + 6x}{(x^2 + 1)^2} = \frac{-x^2 + 6x + 1}{(x^2 + 1)^2};$$

$$f_3'(x) = (2 \times 2x + 5)e^{2x^2 + 5x} = (4x + 5)e^{2x^2 + 5x};$$

$$f_4'(x) = 6 \times 2(2x - 11)^5 = 12(2x - 11)^5.$$

Corrigé AP03-05

1. Pour tout réel x :

$$\varphi'(x) = 1 \cdot e^x + xe^x - e^x = xe^x$$

Puisque l'exponentielle est strictement positive, $\varphi'(x)$ est du signe de x. Donc :

- Sur] $-\infty$;0], φ' est négative et donc φ est décroissante.
- Sur $[0; +\infty[$, φ' est positive et donc φ est croissante.

 φ admet donc un minimum sur $\mathbb R$ en 0, minimum égal à :

$$\varphi(0) = 0e^0 - e^0 + 1 = 0 - 1 + 1 = 0.$$

2. a. Pour tout $x \in \mathbb{R}^*$:

$$f'(x) = \frac{e^x \cdot x - (e^x - 1) \cdot 1}{x^2} = \frac{xe^x - e^x + 1}{x^2}$$

b. On remarque que pour tout réel *x* non nul :

$$f'(x) = \frac{\varphi(x)}{x^2}.$$

Or φ admet 0 pour minimum, donc $\varphi(x)$ est positif, et il en va de même pour x^2 . Pour tout réel x *non nul*, f'(x) est positive.

La fonction f est donc croissante sur $]-\infty;0[$ ainsi que sur $]0;+\infty[$.

Corrigé AP03-06

1. La fonction f est dérivable sur \mathbb{R} et pour tout réel x:

$$f'(x) = 3x^2 - 3.$$

Le polynôme $3x^2-3$ a pour racines évidentes 1 et -1, son coefficient principal est 3, donc positif, ce qui signifie que le polynôme est positif à l'extérieur de ses racines.

Donc:

- Sur] $-\infty$; -1], f' est positive et donc f est croissante.
- Sur [-1;1], f' est négative et donc f est décroissante.
- Sur $[1; +\infty[$, f' est positive et donc f est croissante.
- **2.** La fonction g est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \quad g'(x) = 1 \times e^x + xe^x = (1+x)e^x.$$

Puisque $e^x > 0$, g'(x) est du signe de 1 + x.

La fonction $x \mapsto 1 + x$ s'annule en x = -1, elle a un coefficient directeur positif (1), donc elle est croissante, ce qui implique qu'elle est négative à gauche de -1 et positive à droite de 1.

Donc:

- Sur] $-\infty$; -1], g' est négative et donc g est décroissante.
- Sur $[-1; +\infty[$, g' est positive et donc g est croissante.

Corrigé

a. Pour tout réel x, e^x est strictement positif; sachant que x est supérieur à -1, x+1 est lui aussi strictement positif.

Le produit de ces deux facteurs est donc strictement positif.

х	-1		$+\infty$
f(x)		+	

b. $f = \frac{u}{v}$ où u et v sont définies sur $]-1;+\infty[$ par

$$u(x) = e^x$$
 et $v(x) = x + 1$.

u est dérivable sur] -1; $+\infty$ [et v est dérivable et non nulle sur] -1; $+\infty$ [. Donc f est aussi dérivable sur] -1; $+\infty$ [avec

$$f' = \frac{u'v - uv'}{v^2}.$$

Sachant que

$$u'(x) = e^x$$
 et $v'(x) = 1$,

pour tout réel $x \ge -1$:

$$f'(x) = \frac{e^x \cdot (x+1) - e^x \cdot 1}{(x+1)^2} = \frac{xe^x + e^x - e^x}{(x+1)^2} = \frac{xe^x}{(x+1)^2}.$$

Les facteurs e^x et $(x+1)^2$ étant strictement positifs, f'(x) est du même signe que x. D'où le tableau de variation suivant (les éléments en rouge ne sont exigibles qu'en terminale).

Х	-1	0		$+\infty$
f'(x)	_	0	+	
	+∞			$+\infty$
f	`_	~		7
		_ 1	-	

Avec:

$$f(0) = \frac{e^0}{0+1} = \frac{1}{1} = 1.$$

(Terminale seulement.)

$$\lim_{\substack{x \to -1 \\ x \ge -1}} x + 1 = 0^+$$

et

$$\lim_{x \to -1} e^x = e^{-1}$$
 avec $e^{-1} > 0$.

Donc

$$\lim_{\substack{x \to -1 \\ x \ge -1}} \frac{e^x}{x - 1} = +\infty.$$

D'autre part, pour $x \neq 0$:

$$\frac{\mathrm{e}^x}{x+1} = \frac{x\left(\frac{\mathrm{e}^x}{x}\right)}{x\left(1+\frac{1}{x}\right)} = \frac{\frac{\mathrm{e}^x}{x}}{1+\frac{1}{x}}.$$

Nous savons (cours sur les croissances comparées) que

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

et que

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \implies \lim_{x \to +\infty} 1 + \frac{1}{x} = 1.$$

Donc:

$$\lim_{x \to +\infty} \frac{\frac{e^x}{x}}{1 + \frac{1}{x}} = +\infty.$$