EX-02-S03

retour

Calculer chaque expression et donner le résultat sous la forme d'une fraction irréductible.

\[A=\left(\frac 4 5 - \frac 1 {15}\right)\times\left(\frac 1 6 + \frac 1 4\right)\;;\]
Corrigé

\[\begin{aligned} A &= \left(\frac 4 5 - \frac 1 {15}\right) \times \left(\frac 1 6 + \frac 1 4\right)&\\ &=\left(\frac{12}{15}-\frac 1{15}\right)\left(\frac 2 {12} + \frac 3 {12}\right)&\\ &=\frac{12 - 1}{15} \times \frac{2+3}{12}&\\ &=\frac{11}{15} \times \frac 5 {12}&\\ &=\frac{11\times 5}{15\times 12}&\\ &=\frac{11}{3\times 12}&\\ &=\frac{11}{36}.& \end{aligned}\]
\[B=\frac 4 3 \times \left(\frac 1 8 - 1\right)\;;\]
Corrigé
\[\begin{aligned} B &= \frac 4 3 \times \left(\frac 1 8 - 1\right)&\\ &= \frac 4 3 \times \left(\frac 1 8 - \frac 8 8\right)&\\ &= \frac 4 3 \times \left(-\frac 7 8\right)&\\ &= -\frac{4\times 7}{3\times 8}&\\ &=-\frac 7 {3\times 2}&\\ &=-\frac 7 6.& \end{aligned}\]
\[C=\dfrac{\dfrac{-9} 4 \times \dfrac 5 9}{1-\dfrac 7 {12}}.\]
Corrigé
\[\begin{aligned} C&=\dfrac{\dfrac{-9} 4 \times \dfrac 5 9}{1-\dfrac 7 {12}}&\\ &= \dfrac{-\dfrac{5}{4}}{\dfrac{12}{12}-\dfrac 7 {12}}&\\ &=\dfrac{-\dfrac 5 4}{\dfrac 5 {12}}&\\ &=-\dfrac 5 4 \times \dfrac {12} 5&\\ &= -3.& \end{aligned}\]

retour

code : 715