EX-04

retour

Simplifier les expressions suivantes :

a. $\mathrm e^{-3x} \times \mathrm e^x$; Corrigé

$\mathrm e^{-3x} \times \mathrm e^x = \mathrm e^{-3x+x} = \boxed{\mathrm e^{-2x}} = \boxed{\dfrac 1 {\mathrm e^{2x}}}$;

b. $\dfrac{\mathrm e^{-3x}}{\mathrm e^x}$; Corrigé

$\dfrac{\mathrm e^{-3x}}{\mathrm e^x} = \mathrm e^{-3x-x} = \boxed{\mathrm e^{-4x}} = \boxed{\dfrac 1{\mathrm e^{4x}}}$;

c. $\dfrac{\mathrm e^{2x} \times \mathrm e^{-5x}}{\mathrm e^{-2x}}$; Corrigé

$\dfrac{\mathrm e^{2x} \times \mathrm e^{-5x}}{\mathrm e^{-2x}} = \mathrm e^{2x-5x+2x}= \boxed{\mathrm e^{-x}} = \boxed{\dfrac 1 {\mathrm e^x}}$;

d. $\dfrac{\mathrm e^x}{\left(\mathrm e^{3x}\right)^2}$. Corrigé

$\dfrac{\mathrm e^{x}}{\left(\mathrm e^{3x}\right)} = \dfrac{\mathrm e^{x}}{\mathrm e^{6x}} = \mathrm e^{x - 6x} = \boxed{\mathrm e^{-5x}} = \boxed{\dfrac{1}{\mathrm e^{5x}}}$.

retour

code : 542