retour
Résoudre les inéquations suivantes dans $\mathbb R_+^*$:
a.
$\ln(x) < 3$;
Corrigé
\[\begin{aligned}
&\ln(x) < 3&
\\ \iff
&x < \mathrm e^3&
\\
&S=\big]0;\mathrm e^3\big[.&
\end{aligned}\]
b.
$2\ln(x) + 200 > 0$;
Corrigé
\[\begin{aligned}
&2\ln(x)+200 > 0&
\\ \iff
&\ln(x) > -\frac{200}{2}&
\\ \iff
&\ln(x) >-100&
\\ \iff
&x > \mathrm e^{-100}&
\\
&S = \big]\mathrm e^{-100};+\infty\big[.&
\end{aligned}\]
c.
$1-2\ln(x)\geqslant 0$;
Corrigé
\[\begin{aligned}
&1 - 2\ln(x) \geqslant 0&
\\ \iff
&-2\ln(x) \geqslant -1&
\\ \iff
&\ln(x) \leqslant \frac{-1}{-2}&
\\ \iff
&\ln(x) \leqslant \frac 1 2&
\\ \iff
&x \leqslant \mathrm e^{1/2}&
\\ \iff
&x \leqslant \sqrt{\mathrm e}&
\\
&S = \big]0;\sqrt{\mathrm e}\big[.&
\end{aligned}\]
d.
$2\ln(x)- 4\ln(3) <0$.
Corrigé
\[\begin{aligned}
&2\ln(x) - 4\ln(x) < 0&
\\ \iff
&\ln(x) < \frac{4\ln(3)}2&
\\ \iff
&\ln(x) < 2\ln(3)&
\\ \iff
&\ln(x) < \ln\left(3^2\right)&
\\ \iff
&\ln(x) < \ln(9)&
\\ \iff
&x < 9&
\\
&S = \big]0;9\big[.&
\end{aligned}\]
retour