5.08

retour

Résoudre les équations suivantes dans $\mathbb R_+^*$.

a. $\ln(x) = -3$;
Corrigé

\[\ln(x) = -3 \iff x = \mathrm e^{-3}.\] Donc $S = \big\{\mathrm e^{-3}\big\}$.

b. $2\ln(x)-1 = 0$;
Corrigé

\[\begin{aligned} &2\ln(x) - 1 =0& \\ \iff &\ln(x) = \frac 1 2& \\ \iff &x = \mathrm e^{1/2}& \\ \iff &x = \sqrt{\mathrm e}& \\ &S = \left\{\sqrt{\mathrm e}\right\}.& \end{aligned}\]

c. $\left(\ln(x) + 5\right)\left(4\ln(x)- 5\right) = 0$;
Corrigé

\[\begin{aligned} &\left(\ln(x)+5\right)\left(4\ln(x)-5\right)=0& \\ \iff &\begin{cases}\ln(x) + 5 = 0\\ 4\ln(x)-5 = 0\end{cases}& \\ \iff &\begin{cases}\ln(x)=-5\\ \ln(x) = \frac 5 4\end{cases}& \\ \iff &\begin{cases}x=\mathrm e^{-5}\\ x=\mathrm e^{5/4}\end{cases}& \\ &S=\big\{\mathrm e^{-5};\mathrm e^{5/4}\big\}.& \end{aligned}\]

d. $\left(\ln(x)\right)^2 = 9$.
Corrigé

\[\begin{aligned} &\left(\ln(x)\right)^2 = 9& \\ \iff &\begin{cases}\ln(x) = 3\\ \ln(x) = -3\end{cases}& \\ \iff &\begin{cases}x = \mathrm e^3\\x = \mathrm e^{-3}\end{cases}& \\ &S = \big\{\mathrm e^{-3};\mathrm e^3\big\}.& \end{aligned}\]

retour

code : 340