5.05

retour

Résoudre les équations suivantes.

a. $2\mathrm e^x-3=0$;
Corrigé

\[\begin{aligned} 2\mathrm e^x - 3 &= 0& \\ \iff \mathrm e^x &=\frac 3 2& \\ \iff x&=\ln \frac 3 2.& \\ S&=\left\{\ln \frac 3 2\right\}.& \end{aligned}\]

b. $\mathrm e^{-x+1} - 1=0$;
Corrigé

\[\begin{aligned} \mathrm e^{-x+1} - 1&= 0& \\ \iff \mathrm e^{-x+1} &=1& \\ \iff -x+ 1 &=0& \\ \iff x&=1.& \\ S &= \big\{1\big\}.& \end{aligned}\]

c. $\mathrm e^{2x}=4$;
Corrigé

\[\begin{aligned} \mathrm e^{2x}&=4& \\ \iff 2x &=\ln 4& \\ \iff x &= \frac 1 2\ln 4 = \ln\sqrt 4 = \ln 2& \\ S &= \big\{\ln 2\big\}.& \end{aligned}\]

d. $\left(2\mathrm e^x - 1\right)\left(\mathrm e^x +5\right)=0$.
Corrigé

\[\begin{aligned} &\left(2\mathrm e^x - 1\right)\left(\mathrm e^x + 5\right) = 0& \\ \iff &\begin{cases} \mathrm 2e^x - 1 = 0\\ \mathrm e^x + 5 = 0 \end{cases}& \\ \iff &\begin{cases} \mathrm e^x = \frac 1 2\\ \mathrm e^x = -5\ \text{impossible}\end{cases}& \\ \iff &\mathrm e^x = \frac 1 2& \\ \iff &x = \ln \frac 1 2 \iff x = -\ln 2& \\ &S = \big\{-\ln 2\big\}.& \end{aligned}\]

retour

code : 339