SUP03-31

retour

Résoudre dans ℝ les équations suivantes :

  1. $3 - (5x +1) = 8x + (4-2x)$;
    Corrigé
    \[\begin{aligned} &3 - (5x +1) = 8x + (4-2x)& \\ \iff &3 -5x - 1 = 8x + 4 - 2x& \\ \iff &-5x - 8x + 2x = 4 - 3& \\ \iff &-11x = 1& \\ \iff &x = -\frac 1 {11}.& \end{aligned}\] Donc $S = \left\{-\dfrac 1 {11}\right\}$.
  2. $8 - 3(2x - 4) = 5x - (x+1)$;
    Corrigé
    \[\begin{aligned} &8 - 3(2x - 4) = 5x - (x+1)& \\ \iff &8 - 6x + 12 = 5x -x - 1& \\ \iff &-6x-5x+x = -8 -12 - 1& \\ \iff &-10x = -21& \\ \iff &x = \dfrac{-21}{-10}& \\ \iff &x =\frac{21}{10}.& \end{aligned}\] Donc $S = \left\{\dfrac{21}{10}\right\}$.
  3. $8 + (3x - 2) = 5x - (3x - 5)$;
    Corrigé
    \[\begin{aligned} &8 + (3x - 2) = 5x - (3x - 5)& \\ \iff &8 + 3x - 2 = 5x - 3x + 5& \\ \iff &3x -5x + 3x = -8 +2 + 5& \\ \iff &x = -1& \end{aligned}\] Donc $S = \big\{-1\big\}$.
  4. $4(2x-6) - 8 = 5 - (x - 7)$.
    Corrigé
    \[\begin{aligned} &4(2x-6) - 8 = 5 - (x - 7)& \\ \iff &8x - 24 - 8 = 5 - x + 7& \\ \iff &8x+x = 24 + 8 +5 + 7& \\ \iff &9x = 30& \\ \iff &x = \frac{30}{9}& \\ \iff &x = \frac {10} 3.& \end{aligned}\] Donc $S = \left\{\dfrac{10} 3\right\}$.

retour

code : 270