retour
Résoudre dans ℝ les équations suivantes :
\[6x = 4x - 9\;;\]
Corrigé
\[\begin{aligned}
&6x = 4x - 9&
\\ \iff
&6x - 4x = -9&
\\ \iff
&2x = -9&
\\ \iff
&x = -\dfrac 9 2&.
\end{aligned}\]
Donc $S = \left\{-\dfrac 9 2\right\}$.
\[6-8x = 16x\;;\]
Corrigé
\[\begin{aligned}
&6-8x = 16x&
\\ \iff
&-8x - 16x = -6&
\\ \iff
&-24x = -6&
\\ \iff
&x = \dfrac{-6}{-24}&
\\ \iff
&x = \dfrac 1 4.&
\end{aligned}\]
Donc $S = \left\{\dfrac 1 4\right\}$.
\[3x - 2 = 11\;;\]
Corrigé
\[\begin{aligned}
&3x - 2 = 11&
\\ \iff
&3x = 11 + 2&
\\ \iff
&3x = 13&
\\ \iff
&x = \dfrac{13} 3.&
\end{aligned}\]
Donc $S = \left\{\dfrac{13} 3\right\}$.
\[5-7x= -11\;;\]
Corrigé
\[\begin{aligned}
&5-7x= -11&
\\ \iff
&-7x = -11 - 5&
\\ \iff
&-7x = -16&
\\ \iff
&x = \dfrac{-16}{-7}&
\\ \iff
&x = \dfrac{16}7.&
\end{aligned}\]
Donc $S = \left\{\dfrac{16}{7}\right\}$.
\[4x - 7 = 3x + 8\;;\]
Corrigé
\[\begin{aligned}
&4x - 7 = 3x + 8&
\\ \iff
&4x - 3x = 8 + 7&
\\ \iff
&x = 15.&
\end{aligned}\]
Donc $S = \big\{15\big\}$.
\[9x + 5 = 4 - 3x\;;\]
Corrigé
\[\begin{aligned}
&9x + 5 = 4 - 3x&
\\ \iff
&9x + 3x = 4 - 5&
\\ \iff
&12x = -1&
\\ \iff
&x = -\dfrac 1 {12}.&
\end{aligned}\]
Donc $S=\left\{-\dfrac 1 {12}\right\}$.
\[7 - 8x = 11x - 5\;\]
Corrigé
\[\begin{aligned}
&7 - 8x = 11x - 5&
\\ \iff
&-8x - 11x = -5 - 7&
\\ \iff
&-19x = -12&
\\ \iff
&x = \dfrac{-12}{-19}&
\\ \iff
&x = \dfrac{12}{19}.&
\end{aligned}\]
Donc $S = \left\{\dfrac{12}{19}\right\}$.
\[-2x+5 = -8x + 10.\]
Corrigé
\[\begin{aligned}
&-2x+5 = -8x + 10&
\\ \iff
&-2x + 8x = 10 - 5&
\\ \iff
&6x = 5&
\\ \iff
&x = \dfrac 5 6.&
\end{aligned}\]
Donc $S = \left\{\dfrac 5 6\right\}$.
retour