SUP03-25

retour

Factoriser les expressions suivantes : \[A(x)=x^2 - 9\;;\] Corrigé

\[\begin{aligned} A(x)&=x^2 - 9& \\ &= x^2 - 3^2& \\ &= (x-3)(x+3).& \end{aligned}\]
\[B(x) =x^2-10x+25\;;\] Corrigé
\[\begin{aligned} B(x)&=x^2 - 10x + 25& \\ &= x^2 - 2 \times x \times 5 + 5^2& \\ &= (x- 5)^2.& \end{aligned}\]
\[C(x) =\dfrac{x^2}{81}-\dfrac{16}{25}\;;\] Corrigé
\[\begin{aligned} C(x)&=\frac{x^2}{81} - \frac{16}{81}& \\ &= \left(\frac x 9\right)^2 - \left(\frac 4 9\right)^2& \\ &=\left(\frac x 9 - \frac 4 9\right)\left(\frac x 9 + \frac 4 9\right).& \end{aligned}\]
\[D(x) =x^3 - 16x\;;\] Corrigé
\[\begin{aligned} D(x)&=x^3 - 16x& \\ &= x(x^2 - 16)& \\ &= x(x-4)(x+4).& \end{aligned}\]
\[E(x) =(3x-1)^2 - (5+2x)^2\;;\] Corrigé
\[\begin{aligned} E(x)&=(3x-1)^2 - (5+2x)^2& \\ &= \left[(3x-1) - (5+2x)\right]\left[(3x-1)+(5+2x)\right]& \\ &=[3x-1-5-2x][3x-1+5+2x]& \\ &= (x-6)(5x+4).& \end{aligned}\]
\[F(x) =(3x-1)x^2 - 49(3x-1).\] Corrigé
\[\begin{aligned} F(x) &= (3x-1)x^2 - 49(3x-1)& \\ &= (3x-1)(x^2 - 49)& \\ &= (3x-1)(x-7)(x+7).& \end{aligned}\]

retour

code : 252