retour
Factoriser autant que possible les expressions suivantes :
-
$I(x)=5x^2 + 7x$;
Corrigé
\[\begin{aligned}
I(x)&=5x^2 + 7x&
\\
&= x(5x + 7)&
\end{aligned}\]
-
$J(x)=x^2 + x$;
Corrigé
\[\begin{aligned}
J(x)&=x^2 + x&
\\
&= x(x+1)&
\end{aligned}\]
-
$K(x)=3x^3 - 6x^2 + 9x$;
Corrigé
\[\begin{aligned}
K(x)&=3x^3 - 6x^2 + 9x&
\\
&= 3x(x^2-2x+3)&
\end{aligned}\]
-
$L(x)= x^2 - 4$;
Corrigé
\[\begin{aligned}
L(x)&=x^2 - 4&
\\
&= x^2 - 2^2&
\\
&= (x-2)(x+2)&
\end{aligned}\]
-
$M(x)=9x^2 - 25$;
Corrigé
\[\begin{aligned}
M(x)&=9x^2 - 25&
\\
&= (3x)^2 - 5^2&
\\
&= (3x-5)(3x+5)&
\end{aligned}\]
-
$N(x)=x^2 + 6x + 9$.
Corrigé
\[\begin{aligned}
N(x)&=x^2 + 6x + 9&
\\
&= x^2 + 2\cdot 3\cdot x + 3^2&
\\
&= (x+3)^2&
\end{aligned}\]
retour