retour
Factoriser les expressions suivantes :
\[A = 9 - x^2\;;\]
Corrigé
\[\begin{aligned}
A &= 9 - x^2&
\\
&= 3^2 - x^2&
\\
&= (3-x)(3+x).&
\end{aligned}\]
\[B=x^2 + 2x + 1\;;\]
Corrigé
\[\begin{aligned}
B &= x^2 + 2x + 1&
\\
&= x^2 + 2\cdot x \cdot 1 + 1^2&
\\
&= (x+1)^2.&
\end{aligned}\]
\[C=4x^2 - 12x + 9\;;\]
Corrigé
\[\begin{aligned}
C &= 4x^2 - 12x + 9&
\\
&= (2x)^2 - 2\cdot 2x \cdot 3 + 3^2&
\\
&= (2x-3)^2.&
\end{aligned}\]
\[D=9(x+3)+(x+3)^2\;;\]
Corrigé
\[\begin{aligned}
D &= 9(x+3) + (x+3)^2&
\\
&= (x+3)\left[9 + (x+3)\right]&
\\
&= (x+3)(9 + x + 3)&
\\
& = (x+3)(12 + x).&
\end{aligned}\]
\[E=(x-6)^2 - 16\;;\]
Corrigé
\[\begin{aligned}
E &= (x-6)^2 - 16&
\\
&= (x-6)^2 - 4^2&
\\
&= \left[(x-6) - 4\right]\left[(x-6) + 4\right]&
\\
&=(x-6-4)(x-6+4)&
\\
&= (x-10)(x-2).&
\end{aligned}\]
\[F=(2x-7)^2 - 3(2x - 7).\]
Corrigé
\[\begin{aligned}
F &= (2x - 7)^2 - 3(2x - 7)&
\\
&= (2x - 7)\left[(2x - 7) - 3\right]&
\\
&=(2x-7)(2x - 7 - 3)&
\\
&=(2x - 7)(2x - 10).&
\end{aligned}\]
retour